Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers

نویسندگان

  • Petra Bukovská
  • Milan Gryndler
  • Hana Gryndlerová
  • David Püschel
  • Jan Jansa
چکیده

Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood. Therefore, we conducted a multiple-choice experiment examining hyphal responses to different soil patches within the root-free zone by two AM fungal species (Rhizophagus irregularis and Claroideoglomus claroideum) associated with Medicago truncatula, a legume forming nitrogen-fixing root nodules. Hyphal colonization of the patches was assessed microscopically and by quantitative real-time PCR (qPCR) using AM taxon-specific markers, and the prokaryotic and fungal communities in the patches (pooled per organic amendment treatment) were profiled by 454-amplicon sequencing. Specific qPCR markers were then designed and used to quantify the abundance of prokaryotic taxa showing the strongest correlation with the pattern of AM hyphal proliferation in the organic patches as per the 454-sequencing. The hyphal density of both AM fungi increased due to nitrogen (N)-containing organic amendments (i.e., chitin, DNA, albumin, and clover biomass), while no responses as compared to the non-amended soil patch were recorded for cellulose, phytate, or inorganic phosphate amendments. Abundances of several prokaryotes, including Nitrosospira sp. (an ammonium oxidizer) and an unknown prokaryote with affiliation to Acanthamoeba endosymbiont, which were frequently recorded in the 454-sequencing profiles, correlated positively with the hyphal responses of R. irregularis to the soil amendments. Strong correlation between abundance of these two prokaryotes and the hyphal responses to organic soil amendments by both AM fungi was then confirmed by qPCR analyses using all individual replicate patch samples. Further research is warranted to ascertain the causality of these correlations and particularly which direct roles (if any) do these prokaryotes play in the observed AM hyphal responses to organic N amendment, organic N utilization by the AM fungus and its (N-unlimited) host plant. Further, possible trophic dependencies between the different players in the AM hyphosphere needs to be elucidated upon decomposing the organic N sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships Between land Use and Arbuscular Mycorrhizal (AM) Spore Abundance in Calcareous Soils

This study was conducted to determine soil properties that correlate with the arbuscular mycorrhizal fungal (AMF) spore numbers in semiarid calcareous soils of Hamadan province in northwestern of Iran. Soil samples from six sites managed differently were collected from a 0 to 30 cm depth. The results showed that land use and management systems had a significant effect on AMF spore number in soi...

متن کامل

Seven years of carbon dioxide enrichment, nitrogen fertilization and plant diversity influence arbuscular mycorrhizal fungi in a grassland ecosystem.

• We tested the prediction that the abundance and diversity of arbuscular mycorrhizal (AM) fungi are influenced by resource availability and plant community composition by examining the joint effects of carbon dioxide (CO(2) ) enrichment, nitrogen (N) fertilization and plant diversity on AM fungi. • We quantified AM fungal spores and extramatrical hyphae in 176 plots after 7 yr of treatment wit...

متن کامل

Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth

Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, c...

متن کامل

Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling.

Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that acquire carbon (C) solely from host plants. AM fungi can proliferate hyphae in, and acquire nitrogen (N) from, organic matter. Although they can transfer some of that N to plants, we tested the hypothesis that organic matter is an important N source for the AM fungi themselves. We grew pairs of plants with and without the AM fungus G...

متن کامل

Mycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage

Mycorrhizal fungi can contribute to soil carbon sequestration by immobilizing carbon in living fungal tissues and by producing recalcitrant compounds that remain in the soil following fungal senescence. We hypothesized that nitrogen (N) fertilization would decrease these carbon stocks, because plants should reduce investment of carbon in mycorrhizal fungi when N availability is high. We measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016